Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: covidwho-2023746

RESUMO

Although interstitial lung disease (ILD) is a life-threatening pathological condition that causes respiratory failure, the efficiency of current therapies is limited. This study aimed to investigate the effects of human MIKO-1 (hMIKO-1), a hybrid protein that suppresses the abnormal activation of macrophages, on murine macrophage function and its therapeutic effect in a mouse model of bleomycin-induced ILD (BLM-ILD). To this end, the phenotype of thioglycolate-induced murine peritoneal macrophages co-cultured with hMIKO-1 was examined. The mice were assigned to normal, BLM-alone, or BLM + hMIKO-1 groups, and hMIKO-1 (0.1 mg/mouse) was administered intraperitoneally from day 0 to 14. The mice were sacrificed on day 28, and their lungs were evaluated by histological examination, collagen content, and gene expression levels. hMIKO-1 suppressed the polarization of murine macrophages to M2 predominance in vitro. The fibrosis score of lung pathology and lung collagen content of the BLM + hMIKO-1 group were significantly lower than those in the BLM-alone group. The expression levels of TNF-α, IL-6, IL-1ß, F4/80, and TIMP-1 in the lungs of the BLM + hMIKO-1 group were significantly lower than those in the BLM-alone group. These findings indicate that hMIKO-1 reduces lung fibrosis and may be a future therapeutic candidate for ILD treatment.


Assuntos
Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Colágeno/metabolismo , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo
2.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1264471

RESUMO

Interstitial lung diseases (ILDs) comprise different fibrotic lung disorders characterized by cellular proliferation, interstitial inflammation, and fibrosis. The JAK/STAT molecular pathway is activated under the interaction of a broad number of profibrotic/pro-inflammatory cytokines, such as IL-6, IL-11, and IL-13, among others, which are increased in different ILDs. Similarly, several growth factors over-expressed in ILDs, such as platelet-derived growth factor (PDGF), transforming growth factor ß1 (TGF-ß1), and fibroblast growth factor (FGF) activate JAK/STAT by canonical or non-canonical pathways, which indicates a predominant role of JAK/STAT in ILDs. Between the different JAK/STAT isoforms, it appears that JAK2/STAT3 are predominant, initiating cellular changes observed in ILDs. This review analyzes the expression and distribution of different JAK/STAT isoforms in ILDs lung tissue and different cell types related to ILDs, such as lung fibroblasts and alveolar epithelial type II cells and analyzes JAK/STAT activation. The effect of JAK/STAT phosphorylation on cellular fibrotic processes, such as proliferation, senescence, autophagy, endoplasmic reticulum stress, or epithelial/fibroblast to mesenchymal transition will be described. The small molecules directed to inhibit JAK/STAT activation were assayed in vitro and in in vivo models of pulmonary fibrosis, and different JAK inhibitors are currently approved for myeloproliferative disorders. Recent evidence indicates that JAK inhibitors or monoclonal antibodies directed to block IL-6 are used as compassionate use to attenuate the excessive inflammation and lung fibrosis related to SARS-CoV-2 virus. These altogether indicate that JAK/STAT pathway is an attractive target to be proven in future clinical trials of lung fibrotic disorders.


Assuntos
Janus Quinases/metabolismo , Doenças Pulmonares Intersticiais/patologia , Fatores de Transcrição STAT/metabolismo , Senescência Celular , Estresse do Retículo Endoplasmático , Humanos , Interleucinas/metabolismo , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/genética , Transdução de Sinais
3.
Clin Hemorheol Microcirc ; 77(4): 355-365, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1221935

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) can cause acute respiratory distress syndrome (ARDS). OBJECTIVE: This single centre cross-section study aimed to grade the severity of pneumonia by bed-side lung ultrasound (LUS). METHODS: A scoring system discriminates 5 levels of lung opacities: A-lines (0 points),≥3 B-line (1 point), coalescent B-lines (2 points), marked pleural disruptions (3 points), consolidations (4 points). LUS (convex 1-5 MHz probe) was performed at 6 defined regions for each hemithorax either in supine or prone position. A lung aeration score (LAS, maximum 4 points) was allocated for each patient by calculating the arithmetic mean of the examined lung areas. Score levels were correlated with ventilation parameters and laboratory markers. RESULTS: LAS of 20 patients with ARDS reached from 2.58 to 3.83 and was highest in the lateral right lobe (Mean 3.67). Ferritin levels (Mean 1885µg/l; r = 0.467; p = 0.051) showed moderate correlation in spearman roh calculation. PaCO2 level (Mean 46.75 mmHg; r = 0.632; p = 0.005) correlated significantly with LAS, while duration of ventilation, Horovitz index, CRP, LDH and IL-6 did not. CONCUSIONS: The proposed LAS describes severity of lung opacities in COVID-19 patients and correlates with CO2 retention in patients with ARDS.


Assuntos
COVID-19/diagnóstico por imagem , COVID-19/metabolismo , Dióxido de Carbono/metabolismo , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/virologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Ultrassonografia/métodos
4.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1066781

RESUMO

Despite past extensive studies, the mechanisms underlying pulmonary fibrosis (PF) still remain poorly understood. Here, we demonstrated that lungs originating from different types of patients with PF, including coronavirus disease 2019, systemic sclerosis-associated interstitial lung disease, and idiopathic PF, and from mice following bleomycin (BLM)-induced PF are characterized by the altered methyl-CpG-binding domain 2 (MBD2) expression in macrophages. Depletion of Mbd2 in macrophages protected mice against BLM-induced PF. Mbd2 deficiency significantly attenuated transforming growth factor-ß1 (TGF-ß1) production and reduced M2 macrophage accumulation in the lung following BLM induction. Mechanistically, Mbd2 selectively bound to the Ship promoter in macrophages, by which it repressed Ship expression and enhanced PI3K/Akt signaling to promote the macrophage M2 program. Therefore, intratracheal administration of liposomes loaded with Mbd2 siRNA protected mice from BLM-induced lung injuries and fibrosis. Together, our data support the possibility that MBD2 could be a viable target against PF in clinical settings.


Assuntos
COVID-19/metabolismo , Proteínas de Ligação a DNA/metabolismo , Macrófagos/metabolismo , Fibrose Pulmonar/metabolismo , Animais , Bleomicina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fibrose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Lipossomos/química , Doenças Pulmonares Intersticiais/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/virologia , RNA Interferente Pequeno/metabolismo , Escleroderma Sistêmico/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA